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Abstract
We present a model study of a multi-component system that can form low-
symmetry ordered phases, even though all pair interactions between the
constituent particles are spherically symmetric. Using Monte Carlo simulations
and a mean-field model we investigate the thermodynamic, structural, and
kinetic aspects of the formation of stripe phases for a simple, multi-component
lattice model. This lattice model was chosen to represent a mixture of
spherically symmetric DNA-coated colloids with several species of DNA
linkers. We predict that the optimal strategy to design a specific low-symmetry
phase is the one which not only provides the weakest strength of competitive
binding, but also leads to the ‘staged’ ordering of nanoparticle superstructures.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

A key goal in the development of materials with nano-sized building blocks is the ability
to ‘design’ ordered phases. To achieve this, the properties of the building blocks should be
chosen such that the system will self-assemble into a prescribed structure [1, 2]. One promising
strategy is to use nanoparticles (spherical or non-spherical) that can be linked specifically and
selectively. The molecules that are responsible for this specific interaction are termed linkers.
One example is DNA-linked nanoparticle assemblies, where the particles are covered with
single-stranded DNA (ssDNA) molecules of specific sequences [3–12]. This system was first
introduced experimentally by Mirkin and co-workers [3]. These DNA-coated nanoparticles
can be selectively linked by complementary ssDNA linkers. For every pair of nanoparticles
there can be specific linkers that bind selectively to this pair, figure 1. The size of the colloidal
particles involved varies from tens of nanometres in [3–5, 9–11] to a micron in [6–8, 12].
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Figure 1. Schematic representation of ssDNA-coated colloids and complementary linkers. In
the four-component system of colloids of types A, B, C, and D, each colloid species is grafted
with ssDNA molecules of specific sequence. These ssDNA sequences uniquely define the colloid
identity. Complementary linkers e.g. A′B′ bind selectively and specifically the corresponding
colloid pairs, in this case colloids A and B, respectively. Linkers are composed of the recognition
ssDNA ends complementary to the corresponding ‘probe’ colloid pair, and a spacer (coloured in
black). Spacers can be either dsDNA molecules, or can be built using a nanomaterial, such as
e.g. carbon nanotubes [18], or possibly microtubules, or actin molecules. In recent experiments
the colloid size varied from tens of nanometres [5, 9] (with about a hundred ssDNA molecules
grafted onto each colloid) to a micron [6] (with thousands of ssDNA molecules on each colloid).
We predict that using linkers of different lengths which provide inter-colloid bonds of different
spacings one can design low-symmetry structures.

All these experiments used relatively short ssDNA chains grafted onto the colloids and short
ssDNA linkers, of the order of a few nanometres (up to a few tens of nucleotides long).

The existence of such multi-component systems with ‘programmable’ pair interactions
opens the way to the self-assembly of complex, functional nanostructures in both two
dimensions (2D) and 3D. It was demonstrated recently that DNA-coated colloidal particles
can indeed be programmed to self-assemble into a crystal [6]. Alternatively, but obviously far
more laboriously, they can be assembled ‘by hand’ into a designed, ordered structure using a
laser-tweezers set-up [7].

An important question is how to choose the properties of the elementary building blocks
in order to make them self-assemble into a desired structure. In particular, we need to select
interactions between the particles such that the desired structure forms spontaneously. This is a
major issue, for example, in the design of self-assembling electronic circuits [19] or (photonic)
crystals [20]. One approach to this problem is to design nanoparticles with functional ‘patches’,
where the binding sites are located at specific positions on the surface of a particle [1, 16–18]
(for a simulation study see e.g. [15]). Thus far, few practical realizations of these systems have
been achieved due to the difficulty in manufacturing such ‘patchy’ particles (see e.g. [1, 16]).
Another approach is to use DNA scaffolds as templates for self-assembly of colloids [13, 14],
but this strategy also requires the pre-assembled DNA templates themselves to be designed [13].

Clearly, it would be very attractive if non-spherically symmetric structures could be made
to self-assemble out of spherically symmetric building blocks. The problem of the design of
crystal structures consisting of particles with interactions that can be varied at will is somewhat
similar to the problem of the design of protein structures. The objective in both cases is to
make the system self-assemble into an ordered structure that is kinetically accessible. In some
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respects, the case of DNA-programmed self-assembly is easier than that of protein folding
as there is no frustration imposed by the presence of a protein backbone. The key objective
therefore is to choose the interaction parameters such that they facilitate the kinetics of self-
assembly. The kinetics depends on the details of interaction between the particles. There is
no general recipe that tells us how to combine thermodynamic and kinetic properties, even for
one-component systems. However, Tkachenko et al have recently addressed this question for
a restricted class of potentials modelling DNA-induced colloid interactions [22, 21].

Here, we consider a very simple model system to explore the relation between pair
interactions, phase stability and kinetics of self-assembly. In particular, we consider the
design of wire-like structures using spherically symmetric DNA-coated particles and a set
of complementary linkers as building blocks. Stripe structures can be particularly important
for applications, such as the construction of DNA nano-wires [13]. As DNA molecules can
be metallized in a controlled way according to the sequence [19], the interconnection between
functionally different nanoparticles can be established. For the sake of simplicity we shall
consider a two-dimensional (2D) system of colloids with circular-symmetric interactions,
which we map onto a lattice model. The circular symmetry on the lattice means that the
interaction potential between any two nearest neighbour (or next-nearest neighbour) particles
is independent of the orientation of this particle pair on the lattice. Our aim is to demonstrate
the design principles of building low-symmetry structures using spherically (circular in
2D) symmetric building blocks. A quasi-2D DNA-linked colloidal system can be realized
practically by adding an extra interaction of particles with the surface. This can be achieved
by e.g. using one extra linker ssDNA species connecting specifically particles with the surface
grafted with complementary, ‘probe’ ssDNA.

2. Self-assembly of stripe structures

In this section we first introduce the lattice model of the four-component system. Afterwards,
we explain how one could change practically the range and strength of interactions in systems
of DNA-coated colloids and DNA linker molecules.

2.1. Lattice model of stripe-phase formation

We consider a lattice gas model with particles of four types A, B, C and D which occupy lattice
sites of a square, 2D lattice. For the sake of simplicity we assume that the concentrations of
all particles are equal and fixed. The energy of this system is

H

ε
=

∑

nn

JSi S j +
∑

nnn

KSi S j , (1)

where the ‘spin’ variable Si takes on the value A, B, C, and D depending on which type of
particle is occupying the site i , and we assume that all lattice sites are occupied i.e. we rule out
vacancies. JSi S j and KSi S j are 4 × 4, symmetric, and dimensionless matrices of interactions
for the nearest neighbour (nn) and next-nearest neighbour (nnn) particles, respectively. ε is a
positive constant setting the energy scale for the interaction. The summation in equation (1)
is over all nn particle pairs i and j in the first sum, and nnn particle pairs in the second sum,
respectively.

The ordered stripe structure that forms the ‘design goal’ of our system is shown in figure 2.
The choice of the interactions between the particles intended to achieve this design goal
as a stable state of the system is guided by the following logic. In order to favour the
relative arrangement of the particles as shown in figure 2(a) we set JAB = JBC = JCD =
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Figure 2. Schematic representation of the ordered stripe structure composed of particles of four
species with spherically symmetric interaction potentials. This structure represents the ground
state of the system with the network of interactions shown in the bottom plots (a). The solid lines
connecting the particles represent attractive interactions, and the dashed lines represent competitive
interactions. In particular, in order to realize the stripe phase shown here, the strength of competitive
attractions (dashed lines in (b) and (c)) should be weaker compared to the attraction between ‘native’
nn and nnn particle pairs.

JAD = KAC = KBD = −1. The specificity of the virtual linkers that gives rise to these
interactions, imply that interactions between like type particles are disfavoured, and we set
JSS = KSS = +1, for all species S. Finally, the remaining interactions, shown as dashed
lines in figure 2, which we collectively denote as competitive bindings, are given the strength
δ ≡ JAC = JBD = KAB = KBC = KCD = KAD, where δ is variable. We distinguish
the regime of weak competitive binding when δ is positive and the system strongly prefers
only the ground-state-like configurations, and strong competitive binding when δ is negative,
which tends to destabilize the ground state and favours the configurations shown in figures 2(b)
and (c).

We first investigate the thermodynamic and structural properties of the system. We use
the specific heat per particle, c, characterizing energy fluctuations in the system as our probe
for the thermodynamics. It is defined as

c = 〈(�H/kBT )2〉/N, (2)

where �H = H − 〈H 〉, N is the total number of particles in the system, and the
statistical averaging in equation (2) is performed with the Boltzmann weight proportional
to exp(−H/kBT ), where T is the temperature and kB is the Boltzmann constant.

We performed MC simulations on a lattice with particles of four different species, figure 2.
The computed specific heat per particle is shown in figure 3. We observe qualitatively
different behaviour of the specific heat as a function of δ. In particular, in the case of
weak competitive binding, figure 3(a), the transition to the stripe phase is very broad with
two peaks in the heat capacity. These two peaks correspond to the hierarchical (‘staged’)
rearrangements of the particle super-structures in the system. Similar anomalies in the heat
capacity, corresponding to successive magnetic phase transitions, are experimentally observed
in intercalation compounds [25].
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Figure 3. Specific heat per particle as a function of the inverse temperature β ≡ ε/kBT in the
four-component system of A, B, C, and D particles (see figure 2). All five curves are computed
with the same ground state energy, determined by the couplings JAB = JBC = JCD = JAD =
KAC = KBD = −1, and Jαα = Kαα = +1, for α = A, B, C, D. The strength of competitive
binding δ ≡ JAC = JBD = KAB = KBC = KCD = KAD is +1 in (a), 0 in (b), −0.5 in (c), −0.75 in
(d), and −1 in (e). MC simulations were performed with 1024 particles, and with open boundary
conditions. In (e) the ground state is the columnar-like structure of stripes ordered in 1D only.

With increasing strength of competitive binding (i.e. more negative δ), the order–disorder
transition first becomes sharper (δ = 0, δ = −0.5, and δ = −0.75 in figure 3). However,
upon further decreasing of δ, the peak of the heat capacity gets broader again, and reaches its
broadest form at δ = −1, figure 3 (curve (e)). This is a special case (with δ = −1) where the
system undergoes a transition to the columnar-like phase with stripes ordered in 1D only.

In order to elucidate the structural signature of the behaviour of the specific heat we
introduce the local, structural order parameter—the number of ‘native’ contacts between nn
and nnn particles. In particular, we define

η(αβ) = nαβ

nmax
αβ

, (3)

where nαβ is the number of nn colloid pairs αβ, and nmax
αβ is the maximal possible number of nn

colloid pairs αβ (in the ground state for a given lattice). Analogously, the order parameter is
defined for nnn colloid pairs, ηnext(αβ) = mαβ/mmax

αβ , where mαβ is the number of nnn colloid
pairs αβ, and mmax

αβ is the maximal possible number of nnn colloid pairs αβ. For example, nn
‘native’ contacts for the structure shown in figure 2 are AB, BC, CD, and AD; and nnn ‘native’
contacts are AC and BD.

We also define the fluctuation �η of the order parameter η:

�η(αβ) = 〈(nαβ − 〈nαβ 〉)2〉
nmax

αβ

, (4)

and analogously, the fluctuation of the order parameter for nnn colloid pairs: �next
η (αβ) =

〈(mαβ − 〈mαβ 〉)2〉/mmax
αβ . The statistical averaging in equation (4) is performed as the MC

ensemble averaging.
We computed the average values of the order parameter 〈η〉 and the fluctuation of the

order parameter �η in two cases corresponding to the two different types of behaviour of the
specific heat c, figures 3(a) and (c). In particular, figure 4 shows the case with δ = +1, where c
has two peaks (figure 4(a)). In figures 4(b) and (c) diamonds correspond to the nn AB colloid
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Figure 4. Computed thermodynamic and structural properties of the four-component model in the
case of weak competitive binding: specific heat c per particle (a); mean value of the order parameter
〈η〉 in (b); and fluctuation of the order parameter �η in (c). In (b) and (c) the two curves with
diamonds and stars correspond to the nearest neighbour AB and the next-nearest neighbour AC
particle pairs, respectively (see main text and figure 2). The interaction network used to compute
these plots is identical to the one used to compute figure 3(a), where δ = +1. MC simulations were
performed with 1024 particles and with open boundary conditions.

pairs, and stars correspond to nnn colloid AC pairs (see also schematic plot, figure 2). At low
values of temperature (large β ≡ ε/kBT ; this β should be distinguished from the subscript
β!) these order parameters saturate at one, as the system reaches the ground state (figure 4(b)).
The most prominent feature in figure 4 is that �η for nn and nnn ‘native’ contacts exhibit two
consecutive transitions at two different values of β. The behaviour of the order parameter is
very different in the case of strong competitive binding, δ = −0.5 (see figure 5). In this case
the disorder–order transition is characterized by the cooperative ordering of both nn and nnn
colloid pairs (figure 5(c)).

The first peak of the specific heat (figure 4(a)) corresponds to the ordering transition of
the nn, favourable colloid pairs (we also term these nn native contacts). This is evident from
figure 4(c) (diamonds). In this particular case the nn native contacts are those formed by
AB, BC, CD, and AD nn colloid pairs. At the same time, there is also a pre-ordering of nnn
native contacts (nnn AC and BD colloid pairs). This is represented by the first, weak peak in
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Figure 5. Computed thermodynamic and structural properties of the four-component model in
the case of strong competitive binding: specific heat c per particle (a); mean value of the order
parameter 〈η〉 in (b); and fluctuation of the order parameter �η in (c). In (b) and (c) the two curves
with diamonds and stars correspond to the nearest neighbour AB and the next-nearest neighbour AC
particle pairs, respectively (see main text and figure 2). The interaction network used to compute
these plots is identical to the one used to compute figure 3 (c), where δ = −0.5. MC simulations
were performed with 1024 particles and with open boundary conditions.

figure 4(c) (stars). The second transition at a larger value of β corresponds to the ordering of
nnn native contacts, and is represented by the second, sharp peak of �next

η in figure 4(c) (stars).
In order to rationalize the results from our MC simulation we have derived the phase

diagram of our system within the mean field approximation. Technically this is achieved by
mapping our four-species model onto a spin model with two coupled Ising variables (σ, τ ) per
site. This mapping is given by A → (1, 1), B → (1,−1), C → (−1, 1) and D → (−1, 1).
The single site probability in terms of the Ising spins is given by

Pi (σ, τ ) = 1
4 (1 + mi,1σ + mi,2στ + mi,3τ ). (5)

The generalized single site ‘magnetizations’ defined by the vectors of coefficients mi =
(mi,1, mi,2, mi,3) identify the order parameters of our system. Without dwelling on the details
here, we can formulate the mean field free energy F[{mi}] of the system as a functional of the



S574 D B Lukatsky et al

-3 -1 1 3

0.5

0.25

β
1

δ

Figure 6. Computed mean-field phase diagram for the four-component colloidal system: the
inverse transition temperature, β ≡ ε/kBT , versus the strength of competitive binding, δ (see main
text for the detailed explanation).

single site magnetizations. Minimizing this functional yields the equilibrium phase structure.
More specifically, the phase boundaries can be determined analytically for transitions from
the high temperature disordered state or almost analytically for transitions from pre-ordered
states using a bifurcation analysis of the minimization equations. The resulting phase diagram
is shown in figure 6. We find that this analysis essentially reproduces all the salient features
observed in the simulations. For δ � − 1

3 we expect two consecutive transitions, the first to a
state in which the two sets of nnn compatible pairs of particles separate onto two sublattices
in a chequerboard fashion, followed by a transition in which each of the individual species
preferentially occupies its position within the structure of the design goal,which is the predicted
ground state. For −1 � δ � − 1

3 , we expect a single transition into a state which immediately
possesses the symmetry of the design goal structure. For δ � −1 the ground state of the
system is no longer the design goal structure, but rather a striped or columnar phase, in
which the individual columns are ordered, but there is no correlation between the ordering on
neighbouring columns. Note that in this whole region we also expect a pre-ordering transition
towards a phase in which the columnar pattern first establishes itself, with pairs of species
dividing themselves among the alternating columns, but lacking order within the columns. In
the simulations performed at δ = −1 (curve (e) figure 3) we have not resolved this pre-ordering
transition, but do observe a very broad specific heat peak, which is certainly consistent with
the prediction. Clearly, there are discrepancies in the predictions of the values of the transition
temperatures between the theory and the simulation. However, one cannot expect the mean
field approximation to account for all the quantitative features of the phase diagram in this
naturally strongly fluctuating 2D system.

2.2. Varying range and strength of interactions in DNA-coated colloidal system

We now turn to the question of how one could practically vary the range and the strength
of ssDNA-linker-induced interactions in the system of DNA-coated colloids. Specifically
we would like to show how can one realize experimentally the model interaction network
investigated above. In this context the importance of competitive binding, as introduced in the
previous section, will become apparent.
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Figure 7. Schematic representation of the scenario where a linker designed to provide the binding
between a colloid pair separated by a specific distance (say nnn separation) (a), also provides the
binding at a smaller distance (say nn separation) for the same colloid pair (b), but with a higher
energy of the bond as compared to (a). See also figure 2. The bond energy in this case is the DNA
binding energy plus the bending energy. Practically the linker can be a dsDNA molecule with the
length of the order of 50 nm with ssDNA ‘sticky’, recognition ends.

In the case of ssDNA-coated colloids, the strength and the characteristic range of the inter-
particle interaction potential are determined by the surface grafting densities and sequences of
the probe ssDNAs on colloids, and by the concentration of the complementary ssDNA linkers.
The properties of these linkers depend on their length and flexibility. In addition, the interaction
depends on the properties of the solvent [3–7]. These effective, DNA-linker-induced potentials
were studied theoretically in a number of recent works [21–24].

Our main observation is that the required pattern of interaction can be realized using
ssDNA-coated nanoparticles connected by ssDNA linkers of varying lengths. In particular, in
order to self-assemble a four-component system with a ground state as shown in figure 2, one
can use linkers of two different spacings: shorter A′B′, B′C′, C′D′, and A′D′ linkers with the
bond length equal to the nearest neighbour lattice spacing. This is in combination with longer
A′C′ and B′D′ linkers which favour bonds with the next-nearest neighbour lattice spacing,
figure 2(a).

This design rule imposes the ground-state stripe structure shown in figure 2. The important
factor in the experimental realization of this strategy is the fact that the interactions that are
‘programmed’ to act between next-nearest neighbours (e.g. negative KAC achieved using A′C′
linkers) will also compete for the nearest neighbour AC colloid pairs, due to the flexibility of
DNA bonds (the DNA persistence length is 50 nm). Therefore, the corresponding competitive
interactions (JAC in this case) cannot be switched off entirely (see schematic plot, figure 7 and
also figure 1).

For example, simple, lattice models (see e.g. [23, 24]) predict that the linker-induced
potentials Jαβ ∼ −kBT M ln(1 + zαβ) and Kαβ ∼ −kBT M ln(1 + znext

αβ ), where M is
the maximal possible number of DNA bonds between neighbouring colloids α and β, and
zαβ = exp[(µαβ − εαβ)/kBT ], znext

αβ = exp[(µαβ − εnext
αβ )/kBT ], with µαβ being the chemical

potential of α′β ′ DNA linkers in solution, and εαβ and εnext
αβ is the energy of the bond for nn

and nnn colloid αβ pairs, respectively. For the situation shown in figure 7, clearly, εnext
AC < εAC,

and this corresponds to the scenario of weak competitive binding. In general, εαβ sensitively
depends on the linker mechanical properties, and inter-particle separation.

If linkers have spacers composed of e.g. dsDNA molecules (see figure 7), the typical length
of linkers providing weak competitive binding is restricted to about the dsDNA persistence
length of 50 nm. If however spacers are composed of carbon nanotubes with DNA recognition
ends [18], linkers can be stiff within the range of the order of hundreds of nanometres. If,
for example, linkers are very long and flexible (e.g. dsDNA molecules which are much longer
than 50 nm), the optimal inter-particle spacing is determined by the dsDNA radius of gyration.
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Figure 8. Computed thermodynamic and structural properties of the four-component model with
vacancies in the case of weak competitive binding: specific heat c per particle (a); mean value of
the order parameter 〈η〉 in (b); and fluctuation of the order parameter �η in (c). In (b) and (c) the
two curves with diamonds and stars correspond to the nearest neighbour AB and the next-nearest
neighbour AC particle pairs, respectively (see main text and figure 2). The interaction network
for particles used to compute these plots is identical to the one used to compute figure 3(a), where
δ = +1. The energies of vacancies (V) are all set to be zero: JAV = JBV = JCV = JDV = 0,
KAV = KBV = KCV = KDV = 0, and JVV = KVV = 0. The inset in (b) shows a typical
simulation snapshot of the system at low temperatures (high β). Vacancies are coloured in black.
MC simulations were performed with 1225 particles and with open boundary conditions. The
concentration of all the species (four species of colloids and vacancies) was chosen to be 20%.

3. Kinetics of ordering

In the previous section we have addressed the importance and the realizability of the competitive
bindings in our design problem. In a sense these competitive interactions provide a degree
of freedom one can exploit to optimize the process of achieving the design goal structure.
Specifically, the results of section 2 show that for a wide range of values of δ > −1 the design
goal structure is the predicted stable ground state. However, an additional requirement is that
this state should be kinetically accessible, assuming that one starts from a high temperature
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Figure 9. Computed thermodynamic and structural properties of the four-component model with
vacancies in the case of strong competitive binding: specific heat c per particle (a); mean value of
the order parameter 〈η〉 in (b); and fluctuation of the order parameter �η in (c). In (b) and (c) the
two curves with diamonds and stars correspond to the nearest neighbour AB and the next-nearest
neighbour AC particle pairs, respectively (see main text and figure 2). The interaction network
for particles used to compute these plots is identical to the one used to compute figure 3(c), where
δ = −0.5. The energies of vacancies (V) are all set to be zero: JAV = JBV = JCV = JDV = 0,
K AV = K BV = KCV = K DV = 0, and JVV = KVV = 0. MC simulations were performed
with 1225 particles and with open boundary conditions. The concentration of all the species (four
species of colloids and vacancies) was chosen to be 20%.

or low concentration initial state and subsequently tries to quench the system into the ordered
state. We therefore define the optimally designed system as the one in which the kinetics of
ordering is fastest.

Our key observation now is that the differences in the thermodynamic and structural
behaviour of the model DNA-linked colloidal systems analysed in the previous section and
shown in figures 4 and 5 have an important implication on the kinetics of ordering.

To illustrate this point we look at the thermodynamic and structural properties of our
lattice model but now with vacancies, in order to allow for more realistic vacancy mediated
local rearrangements of particles, rather than the strongly correlated particle exchange moves
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Figure 10. Computed time dependence of the order parameter relaxation from the random
configuration to the equilibrium state upon instantaneous quenching. This is computed for the
four-component system of colloids with vacancies. Plot (a) represents the relaxation of 〈η〉 for the
nn colloid pairs (fraction of nn pairs AB), and (b) represents the relaxation of 〈ηnext〉 for nnn colloid
pairs (fraction of nnn pairs AC). The dashed and solid curves on each plot correspond to δ = +1
and δ = −0.5, respectively. The values of β ≡ β∗ at which the instantaneous quench is performed
are β∗ � 0.794 for δ = +1, and β∗ � 0.957 for δ = −0.5. These values of β∗ are chosen in such
a way that the equilibrium values of 〈η〉∗ � 0.9 and 〈ηnext〉∗ � 0.91 for both cases with δ = +1
(see figure 8(b)) and δ = −0.5 (see figure 9(b)). These threshold, equilibrium values of the order
parameters are marked by the horizontal lines in (a) and (b). Each of the four curves is the average
over 70 MC trajectories.

that the vacancy-less model requires. We again compute the specific heat c, the mean value of
the order parameter 〈η〉 and the fluctuation of the order parameter �η for the four-component
system with vacancies. The energy of this system is analogous to equation (1), except for
the presence of the fifth ‘species’ V—the vacancies, but for simplicity we assume that the
vacancies do not interact with the particles of all other species (JVS = KVS = 0).

The results of these simulations are shown in figures 8 and 9, and they are similar to
the results obtained in the case without vacancies and shown in figures 4 and 5, respectively.
These two cases correspond to the situation of weak (figure 8) and strong (figure 9) competitive
binding. In each case with vacancies present, the order–disorder transition temperature shifts to
a lower value (higher value of β) as compared with the corresponding case without vacancies.
In the case with vacancies the order–disorder transition is also slightly more smeared out as
compared with the case without vacancies.

The relaxation to equilibrium behaviour of the order parameters 〈η〉 and 〈ηnext〉 for nn
(AB) and nnn (AC) colloid pairs, respectively, is shown in figure 10. This is computed upon
the instantaneous quench from random configurations of colloids to the equilibrium state at a
specific value of β = β∗. The dashed and solid curves on each plot correspond to δ = +1 and
δ = −0.5, respectively. The values of β ≡ β∗ at which the instantaneous quench is performed
are β∗ � 0.794 for δ = +1, and β∗ � 0.957 for δ = −0.5. These values of β∗ are chosen in
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Figure 11. Typical snapshot of the equilibrated system at 〈η〉∗ � 0.9 and 〈ηnext〉∗ � 0.91.
Vacancies are coloured in black.

such in way that the equilibrium values of 〈η〉∗ � 0.9 and 〈ηnext〉∗ � 0.91 for both cases with
δ = +1 (see figure 8(b)) and δ = −0.5 (see figure 9(b)). These threshold values of the order
parameters are marked by the horizontal lines in figures 10(a) and (b). A typical snapshot of
the equilibrated system with 〈η〉 � 0.9 and 〈ηnext〉 � 0.91 is shown in figure 11.

We observe that in the case of weak competitive binding, δ = +1, the system relaxes faster
to the equilibrium, ordered state as compared with the case of strong competitive binding,
δ = −0.5. We stress the fact that the thermodynamic transition at δ = +1 is less cooperative
than at δ = −0.5 (compare figure 8 with figure 9); however, the kinetics of ordering is faster
at δ = +1. Pre-ordering of the nn ‘native’ contacts at δ = +1 (characterized by the first peak
in c and �η) speeds up the entire ordering of the system. This suggests that the optimal design
strategy should not just aim to reduce the strength of competitive binding, but also to make the
ordering transition structurally ‘staged’. Such a ‘staged’ ordering would facilitate the kinetics
due to the formation of pre-ordered superstructures, which in their turn facilitate the ordering
of the rest of the system.

4. Summary and conclusion

In summary, we propose that non-spherically symmetric, ordered structures can be designed
using spherically symmetric DNA-coated nanoparticles and DNA linkers of non-equal lengths
which form bonds of different spacings. We considered an example of the design of the stripe
structure in the four-component system of colloids with spherically symmetric interaction
potentials. We varied the strength of competitive binding in the designed stripe structure and
monitored the thermodynamic, structural and kinetic properties of the system. In all cases
the system was imposed to have exactly the same ground state energy and the highest degree
of connectivity of particles in the ground state. We established that when the strength of
competitive binding is weak, the four-component system exhibits two consecutive ordering
transitions. These transitions arise due to the ‘staged’ ordering of superstructures within
the system. Most importantly, we predict that these structural, ‘staged’ ordering facilitates
the kinetics of colloidal ordering. This is in spite of the fact that the cooperativity of the
order–disorder transition is not the highest when the strength of competitive binding is the
weakest. Based on these observations, we propose that the optimal design strategy should not
only provide the weakest competitive binding, but should also aim at the ‘staged’ ordering of
superstructures in the multi-component system.
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